Area integral estimates for caloric functions
نویسندگان
چکیده
منابع مشابه
New integral inequalities for $s$-preinvex functions
In this note, we give some estimate of the generalized quadrature formula of Gauss-Jacobi$$underset{a}{overset{a+eta left( b,aright) }{int }}left( x-aright)^{p}left( a+eta left( b,aright) -xright) ^{q}fleft( xright) dx$$in the cases where $f$ and $left| fright| ^{lambda }$ for $lambda >1$, are $s$-preinvex functions in the second sense.
متن کاملApplication of the Norm Estimates for Univalence of Analytic Functions
By using norm estimates of the pre-Schwarzian derivatives for certain family of analytic functions, we shall give simple sufficient conditions for univalence of analytic functions.
متن کاملHoradam Polynomials Estimates for $lambda$-Pseudo-Starlike Bi-Univalent Functions
In the present investigation, we use the Horadam Polynomials to establish upper bounds for the second and third coefficients of functions belongs to a new subclass of analytic and $lambda$-pseudo-starlike bi-univalent functions defined in the open unit disk $U$. Also, we discuss Fekete-Szeg$ddot{o}$ problem for functions belongs to this subclass.
متن کاملLogarithmic Convexity of Area Integral Means for Analytic Functions
We show that the L integral mean on rD of an analytic function in the unit disk D with respect to the weighted area measure (1 − |z|) dA(z), where −3 ≤ α ≤ 0, is a logarithmically convex function of r on (0, 1). We also show that the range [−3, 0] for α is best possible.
متن کاملLogarithmic Convexity of Area Integral Means for Analytic Functions Ii
For 0 < p < ∞ and −2 ≤ α ≤ 0 we show that the L integral mean on rD of an analytic function in the unit disk D with respect to the weighted area measure (1−|z|) dA(z) is a logarithmically convex function of r on (0, 1).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1989
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1989-0994163-7